IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Relative convergences of the WKB and SWKB approximations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 5761
(http://iopscience.iop.org/0305-4470/25/21/029)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:31

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 25 (1992) 5761-5777. Printed in the UK

Relative convergences of the wks and swks approximations

Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
Received 5 August 1991, in final form 29 May 1992

Abstract. The relative convergences of the wkb and swkKB approximations are ¢xamined

by calculaiing the eigenenergies for four potentiais by one- and two-term wWKB and swks
approximations. Exact eigenenergies for these four potentials are also calculated by a
numerical integration of the Schrédinger equation. Varied results are found for the four
potentials. It is found that in general the effect of the second term in the wkb and swKkB
approximations depends on the potential, the parameters involved and the quantum number
of the state. No simple generalizations are possible.

1. Introduction

The application of supersymmetric quantum mechanics (susyom) (Witten 1981,
Cooper and Freedman 1983) to bound state problems has led to a number of interesting
results. Comtet, Bandrauk and Campbell (1985) showed that the structure of susyQm
motivates a modification of the conventional wks quantization condition. They further
found that this modified condition, now called the supersymmetric wks (SWKB)
quantization rule, gives the exact energy eigenvalues in the first order for several
solvable potentials. Khare (1985) found similar results for three other solvable poten-
tials. Dutt er al (1986) showed that the leading order swke condition will always
reproduce the exact bound-state spectrum for any shape-invariant potential
(Gedenshtein 1983). Raghunathan et al (1987) showed that for the Rosen-Morse
potential, which is a solvable potential, all higher-order corrections in the swks scheme
vanish. Dutt et al (1991) have reviewed the lowest order swkp approximation. The
question of the effect of higher-order swkB approximation for a potential which is not
exactly solvable was considered by Dutt et al (1987), who compared the results for a
potential due to Murrell {1969) by one- and two-term swks with one- and two-term
wkB. They found that one-term swkB values are much closer to the exact values than
the one-term wkB values. The trend continued even for the two-term values indicating
that perhaps the swke expansion (in orders of #°) has better convergence than the
corresponding one in the old wiks approach. Higher-order terms in the conventional
wks method had been obtained by Kesarwani and Varshni (1978, 1980, 1981, 1982a)
and this was done for the swkp method by Adhikari et al (1988). These authors
obtained energy eigenvalues by swks method up to order #° for the following two
potentials

V(x)=x>+35x° (1)
Vix)=x'+3x%3, ()]

Results for the potential (1) were also obtained by Vasan et al (1988).
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" A number of authors (Dutt er al 1987, Roy et al 1988, Fricke ef al 1988, Khare
and Varshni 1989, DeLaney and Nieto 1990) have compared one-term swks results
with one-term wka results for a variety of potentials. The present situation may be
summarized as follows. For shape-invariant solvable potentials, SWkB gives exact
results in all cases, while wxB gives exact results only for the harmonic oscillator and
the Morse potential. For all other types of potentials, broadly speaking, for n =0, the
sWKEB results are better than the wkg ones in most cases, for n =1, 2, 3 the results are
mixed, for n>>3 for some potentials SWKE is better, while for others wks is better.
One, of course, hag to bear in mind that given any potential, the wks answer can be
immediately computed, while the swkB answer can only be obtained if we also know
the corresponding superpotential W{x) which may not always be known.

Clearly the vexed question of the role played by higher-order terms comes to mind.
There is no easy way to examine the relative convergences of the wkp and swks
approximaﬁﬁns Detailed luvcmlgauuua arc u:quucu with individual potentials. The
use of the term ‘convergence’ in this context needs same qualification and clarification.
It is known that, in general, the wkB series does not converge but is, instead, an
asymptotic expansion (Birkhoff 1933, Kemble 1958, Bohm 1951, Bender and Orszag
1978). This means that the magnitude of the terms may diminish up to a certain term
but after that it may begin to increase. This would mean that for any given value of

»m guecessiva annravimatinne tn the nth sicenvalua nhtainad by tallineg mara and mara
7, SUCCSSSIVE APPIOXIMAaISIS (& Ui ALl CIECOVAIUC O0aINod OF axinig More ana more

terms should improve to some maximal accuracy and then become worse. Examples
of such behaviour have been previously recorded (Bender and Orszag 1978, Kesarwani
and Varshni 1981, 1982a, b, ¢). Thus the concept of convergence is meaningful only
up to and including the term inclusion of which leads to an improvement in the

eigenvalue. Here we consider this question in a limited form. What will happen if we
take the second term in both swkr and wkp into account? The results will indicate

A vl SWVRIIINE RTLMAL A VRl SIS QLI WAL LWV GLLASNANNS L LA LUSAWS W EL BRSNS

which of the two series has the better convergence. The only investigation that throws
some light on this question is that of Dutt er al (1987) who compared two-term SWKB
results with two-term wks results for the Murrell potential. It turned out that both
sets of results were almost the same and every close to the ‘exact’ results. In the present
paper we obtain eigenvalues by the two-term swke and wkB approximation for four
different potentials in order to obtain better evidence to answer the aforesaid question.
In this paper we shall only consider single-well potentials. Some of the potentials
examined in this paper become double- or triple-well potentials for a range of values
of the parameters concerned; we shall exclude such values of the parameters. We shall
use units such that #i=2m=1.

2. The four potentials

2.1. First potential

The non-polynomial oscillator represented by the potential

AN {1}
A2/

where A and g are parameters, has been investigated by a variety of techniques in
recent years (Varshni 1987 and references therein, Adhikari et al 1991 and references
given therein, Bose and Varma 1989, Filho and Ricotta 1989, Fu-Bin 1989, Estrin ef
al 1990, Ifantis and Panagopoulos 1990, Pons and Marcﬂhary 1991). Roy et al (1988)
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showed that potential (3) becomes supersymmetric provided A and g are constrained
by a certain relation. Roy et al (1988) suggested the following superpotential

W(x)=ux—2gx/(1+gx?). (4)
In susygm
Vilx) = Wi(x)+ W'(x). (5)
Thus
2g+4
V(x)= u2x2+1—g+—37ﬁ"—5 (6)

If (6) and {3) are to be the same, then we must have
~A/g=(2g+4p) ™)
m= +1. (8)

These are the constraints that A and g must satisfy.
The energy of the non-polynomial oscillator { E) is connected to E_ obtained from

L} £ SN0 N T
¥WiX) Uy

E=E_+5u+A/g (%)
When p = +1, an exact analytic expression for the ground state can be obtained:
E°=A/g+S5. (10)

But for u=—1, E_#0, and an exact expression is not possible.

2.2. Supersymmetric potentials

We shall generate the other three potentials by supersymmetric quantum mechanics.
There are two ways of doing it. Either one can start with a suitable form of the ground
state wavefunction or one can start with the superpotential (Boya et al 1987, Dutt et
al 1988, Roy et al 1991). In the latter case one has to ensure that the corresponding
wavefunction is normalizable. We shall use the former procedure.

2.3. Second potential
We assume the ground-state wavefunction to be given by
o(x) =exp(—ax”— bx*) (11)
where g and b are constants. Then the superpotential W{x) is obtained from
W(x) =—pg(x)/ dolx)
= 2ax+4bx>. (12)
Thus the potential is
V_{x)= W(x)— W'(x)
=(4a>—12b)x*>+16abx*+16b*x° - 2a. (13)
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The ground-state energy for this potentlal is of course zero. If a®> 3b, potential (13)
has one minimum, and when a®<3b it has three minima. We are lnterested in the
one-minimum case only and so we shall choose a and b such that a®> 3b, Potentials
of the type V(x)=ax?+ Bx*+ yx® have been investigated by a variety of methods. The
following are a few of the recent references: Znojil (1986), Dutta and Willey (1988),
Burrows et al (1989), Adhikari et al (1989), Chaudhuri and Mondal (1989, 1991),
Singh et al (1990).

2.4, Third potential

exp(—ax?)
¢0(X)= (1+bx2) (14)
2x(a+ b+ abx?)
W= s
2 2
V()= 2A—a—b+(2a’+3b"+2ab)x’+ (3ab” +4a’h)x*+2a%’x"] (16)

(1+ bx?)?

If b/a>7.565 96, this potential also becomes a three-minimum potential. To avoid
it, we have chosen @ and b such that b/ a < 7.565 96.

2.5. Fourth potential
$o{x) = exp(—ax’) +exp(—bx?) (17)
2x{a+b exp[(a - b)x?]}
1+exp[(a—b)x?]
{-2a+4a’x*+ (—2b+4b*x*) expl(a - b)xZ]}
{1+expf(a—b)x"]}

The expressions are symmetric with respect to a and b. We shall take b>a. If
b/a > 3.68, this potential also develops three minima. Hence a and b were given values
such that b/a <3.68.

Wix)=

(18)

V.(x)= (19)

3. Two-term WKg and SWKB

The two-term wks (Krieger et al 1967, Kesarwani and Varshni 1978) and swke (Dutt
et al 1987, Adhikari et al 1988) expressions have been derived by previous workers,
s0 here we shall merely quote them.

WKB: .b(E—V)”zdx——l-ij.b-——-‘i—dx=(n+l)ﬂ 20)
' Ja 24 dE ), (E-V)'? ?
where o and b are the turning points defined by £E— V=0.
[d [2wa2 WW"]
SWKB! J. (E_-W?dx _EZJ. W= nir (21)

where ¢ and d are the turning points of E_— W?=(. The one-term results are obtained
by dropping the second term on the left-hand side of equations (20) and (21).
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4. Resnlts and discussion

The numerical method of Barwell et al (1979) was used to evaluate the second integral
on the left-hand side of equations (20} and (21). An iterative method was used to
calculate the energy. The ‘exact’ energy was also calculated by numerical integration
of the Schrodinger equation. We shall use the following acronyms; 1wk for one-term
wkB, 2WKR for two-term wx R, and similarly for the swxn,

4.1. First potential, equation (3)

Equations (7) and (8) put important constraints on the possible values of A and g
First let us consider the case when u =+1. Then equation {7) becomes

—-Alg=2g+4. (22)

For positive g, A is negative. A Is acceptable between 0 and —1, but if A<<—1, then
potential (3) becomes a double minimum potential. A =—1 when g = 0.224 745. Thus
the allowed values are 0.224 745> g= 0 and 0= A > —1. We shall call it region 1. Next
we consider the case when w = —1. Equation (7) becomes

—-Alg=2g—-4 (23)
By arguments similar to those given for the u =+1 case, it can be readily seen that
these are three possible allowed regions:
II. 1z2g=0,2=A=0;
HI 22g>1,2>A20;
IV. 2.224745>g>2, 0> A>—1.
Roy et al (1988) have considered regions I and II only. Here we shall present results
for all the four allowed regions. In regions I and 11, Roy et al (1982) have used certain
sets of values of g and A for comparing 1wks and 1swkBs results for the potential (3)
and the same sets of values of g and A were used by us so that the results could be
compared. The results are shown in table 1 for u=+1 (region I), and in table 2 for
w=—1(region I1}. When u =+1, E. for the ground state is zero, and the 1swkE gives
the exact energy. In such a situation, the numerical evaluation of the second term on
the left-hand side of equation (21) is subject to considerable uncertainties because
there is a singularity right at E_ =0 and the region of integration is very small. Hence
in the 23wkg column in table t, for 7 =0, the energy shown is from rswxkg and it is
enclosed in parentheses. When u = —1, in equation (21), on the right-hand side, n is
replaced by (n+1).

The results for regions III and IV are shown in tables 3 and 4 respectively. The
tabular arrangement of the results is slightly different from that of tables 1 and 2,
because in tables 3 and 4 we also include the 1wk and 1swkB results. The percentage
errors with respect to the exact energy are shown immediately below the wkp and
swkB results. The best value amongst the four wkp and swkB results is marked by an
asterisk. We shall discuss tables 1 and 2 together.

Tables 1 and 2. A comparison of the two-term resuits obtained here with the one-term
results obtained by Roy er al (1988) shows that in practically all cases the inclusion
of the second term has led to an improvement in the energy, both for wke and swkas.
Sometimes, the improvement is indeed remarkable, for example, forg=1,A=2, n =0,
the error in the one-term swkB energy was 8.236%, and with two-terms, it is only



5766 Y P Varshni

Table 1. 2wxB, 2sWKB and exact eigenenergies for the potential (3) for g =+1and E_=0
for the ground state. Region I of the parameters.

Percentage Percentage
g A n 2WKB error 2SWKB error Exact
0.05 —0.205 0 (.89992 —-0.009 (0.900 00) 0.000 0.900 00
1 2711450 -0.001 2.714 54 0.001 2.71452
2 4.554 60 0.000 4.554 62 0.000 4.554 60
3 6.414 41 0.000 6.414 41 0.000 6.414 40
4 §.28994 0.000 8.28993 0.000 8.28992
5 10.178 31 0.000 10.178 29 0.000 10.178 28
0.10 =0.420 0 0.798 24 -0.220 (0.800 00) 0.000 0.800 00
1 245589 0.008 2.456 12° 0.017 2.45570
2 4,198 15 0.006 4,198 05 0.004 419790
3 5.991 85 0.007 5.991 54 0.002 599140
4 7.82079 0.009 7.82028 0.002 7.82019
S 9.675 50 0.010 9.67479 0.003 9.674 54
0.15 —-0.645 0 0.689 87 —1.447 {0.700 00) 0.000 0.760 00
H 222234 0.128 222196 0.111 2.21950
2 3.906 33 0.051 3.904 87 0.009 3.904 52
3 5.667 94 0.056 5.665 44 0.012 5.664 76
4 747778 0.055 7.474 52 03.012 7.47365
5 9.32098 0.054 9.317 01 0.011 9.31598
0.20 —0.880 0 0.571 18 ~4.804 (0.600 00) 0.000 0.600 00
1 2.01495 0.643 2.00% 70 0.381 2.00208
2 3.664 49 0.213 3.65709 0.011 3.65670
3 5.409 02 0.203 540012 0.039 539804
4 7.21023 0.173 7.20001 0.031 7.197 80
5 9.049 17 0.152 9.037 79 0.026 9.035 46

® Indicates that the 2swxB result is poorer than the 2wKB resuit.

0.067%. The cases where the 23wWKB energy is worse than the 2wks energy are shown
by a superscript @ in the 2swkB energy column. In the one-term results there were
only 15 cases (out of 60) for which the swkn results were better than the WKB ones;
with two terms this number has shot up to 52. In two additional cases, the 2sWKB is
only marginally worse than 2wxa. It clearly shows that the second-term plays a vital
role and the convergence of the swkB series appears to be substantially better than
that of the wkB series, at least for the regions I and II of the potential (3).

It will be noticed from tables 1 and 2 that there is a tendency for the errors to
increase with the increase in the numerical magnitudes of g and A. It is of some interest
to note that of the eight cases for which the 2swkB results are poorer than the 2WKB
ones, five are for n=1.

Table 3. For the wks results it will be noticed that the in¢lusion of the second term
has led to an improvement in the energy only for n=0 state for the four sets of
parameters, otherwise, in all other cases it worsens the energy indicating that the WkB
series becomes divergent for n> 0. For the swkB cases we notice that for n =0 there
is a large error in the energy which decreases very sharply with the inclusion of the
second term, inasmuch as the 2swkBs results are the best ones for n=0. For the first
set of parameters, the inclusion of the second term has improved the energy for n=1
and 2 also, but for the other three sets of parameters the 2swkBs results are worse than
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Table 2. 2wKB, 25WKB and exact eigenenergies for the potential (3) for u=—1and E_=0
for the ground state. Region 11 of the parameters.

Percentage Percentage
g A n 2WKB error 2SWKB error Exact
0.10 0.380 0 1.15719 0.016 1.156 97 —0.004 1.157 01
1 344022 0.001 3440117 —0.002 344017
2 5.669 84 0.000 566979  —0.001 5.669 85
3 7.85997 —-0.001 7.859 96 —0.001 7.86003
4 10.02023 —0.001 10,020 27 —-0.001 10.020 37
5 12.157 41 ~0.002 12.157 51 —-0.001 12.157 65
0.20 0.720 0 1.262 69 0.084 1.261 26 —0.030 1.261 63
1 3.70334 0.000 3.70295*  -0.011 3.703 35
2 6.01416 —0.008 601417 —0.008 6.014 66
3 8.244 9 -0.015 8.24538 -0.008 8.246 10
4 10.423 63 —-0.021 10.424 87 —-0.009 10.425 82
5 12.566 90 —0.026 12.569 14 —0.008 12.570 19
0.30 1.020 0 1.33849 0.198 1.334 88 ~-0.072 1.33584
1 387324 -0.017 3.87264* —0.033 3.87390
2 6.208 86 —-0.038 6.209 60 -0.027 6.21125
3 8.438 65 -0.062 8.441 62 —0.026 8.443 85
4 10.607 3t -0.079 10.613 49 —0.020 10.615 65
5 1273777 ~0.088 12.747 62 —-0.010 12.748 95
0.40 1.280 0 1.39373 0.351 1.387 25 —-0.116 1.388 86
1 3.981 86 —-0.059 398135 —0.072 398423
2 6.31379 —0.104 6.316 69 —0.058 6.320 36
3 8.526 99 -0.152 8.536 04 -0.046 8.539 95
4 10.678 22 —0.175 10.695 16 ~0.017 10.696 94
5 12,793 25 —0.180 12.818 17 0.015 12.816 29
0.50 1.500 0 1.433 37 0.538 1.423 54 -0.152 1.42570
1 4,045 64 —-0.137 4.045 69 —-0.136 4.05120
2 6.35797 -0.212 6.365 14 —0.100 6.371 50
3 8.548 87 —-0.284 B.568 75 —-0.052 8.57319
4 10.68198 —-0.300 10.716 54 0.022 10.7114 15
5 12.782 99 -0.289 12.83093 0.085 12.820 01
1.00 2.000 o 147574 1.964 1.448 29 0.067 1.447 32
1 3.946 97 —1.286 3.954 28 —1.103 3.998 40
2 6.100 17 ~1.268 6.167 67 -0.175 £17849
3 8.19577 —-1.195 8.35430 0.716 8.294 90
4 10.270 30 —0.947 10.498 05° 1.250 10.368 48
5 1233122 —0.753 12.600 20* 1.412 1242476

® Indicates that the 25WKE result is poorer than the 2wKB result.

the 1swke ones for n> 0. It is of some interest to see that for n >0, the 1wWKB results
are the best.

Table 4. Broadly speaking the pattern of the results is similar to that in table 3, but
there are some important differences. Here all 2wkB results are worse than the 1wks
results. Like the previous case the 1swks energy for a =0 has a large error for all the
four sets of parameters, and the error is sharply reduced with the inclusion of the
second term, making the 25wkB results the best ones. However, for n> 0 the 2swks
results are worse than the 1swks ones in all other cases. Here also we find that for
n>0, the ywks results are the best ones.
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Table 3. wkB, swiks and exact eigenenergics for the potential (3) for u=—1. The first
line against each quantum number gives the energies and the second one, the corresponding
percentage errors. The best values are marked by an asterisk. Region I1I of the parameters.

g A n 1WKB ZWKB ISWKB 2SWKB Exact
1.20 1.92 0 1.482 50 1.438 06 1.248 73 1.407 47* 1.401 35
5.791 2,620 ~10.891 0.437
1 384431 3.78563 3.78387 3.78805 386510
—0.538 —2.056 -2.102 —1.994
2 5.99291* 5888 51 5.964 50 5.99711 5.991 56
0.023 -1.720 —0.452 0.093
3 8.078 01* 7.96403 8.060 82 8.219 27 8.081 83
—0.047 —1.458 —0.260 1.701
4 10.134 38* 10.026 84 10.123 07 10.376 09 10.134 98
-0.001 —1.067 ~0.118 2379
5 12.176 35* 12.078 66 12.167 39 12.47501 12.177 58
-0.010 -0.812 =.082 2.442
1.40 1.68 0 1.402 39 137091 1.144 34 1.344 34% 133135
5336 2972 ~14.047 0.976
1 3.669 34* 3.587 64 3.603 87 3.56709 3.691 04
—0.588 -2.801 —2.362 —3.358
2 5.775 03* 5.656 63 5.743 15 5.81574 5.77198
0.053 —1.998 ~0.499 0.758
3 7.83515* 7.71835 7.81538 8.094 21 7.839 00
—0.049 —1.539 -0.301 3.256
4 9.875 21* 9.770 71 9.861 40 10.262 06 9.87473
0.005 -1.053 —0.135 3.922
5 11,904 37* 11.813 25 11.894 02 12.352 60 11.905 57
=0.010 —0.775 —0.097 3.755
1.60 1.28 0 1.293 48 127115 1.017 56 1.259 28* 1.23995
4.317 2.516 ~17.936 1.55%
1 3.466 29* 3.37385 3.39528 3.296 42 348491
-0.534 —3.187 -2.572 —-5.409
2 5.533 25* 5422 45 5.497 41 5.644 04 5.529 52
0.067 -1.936 —-0.581 2.0M
3 7.57122* 7.47093 7.548 54 7.9%0 41 7.574 59
-(.045 —1.36% —3.344 5.480
4 9.596 49* 9.51088 9.580 44 10.160 74 9.595 69
0.008 —0.834 —0.159 5.889
5 11.614 86* 11.542 30 11.60272 12.236 11 11.61592
- 0.009 —0.634 -0.114 5.339
1.80 0.72 Y 1.158 42 1.139 52 0.87018 1.149 60* 1.129 04
2.602 0.928 ~22927 1.821
1 3.241 61* 3.168 33 3.16428 2.976 31 3.25300
-0.350 —-2.603 -2.727 —8.506
2 5.273 54* 5.19992 5231321 5.502 63 5.270 69
0.054 —1.343 -0.711 4.401
3 7.291 63* 7.22972 7.265 68 79129 7.293 78
—0.029 ~0.878 —0.385 8.438
4 9.303 65* 9.25279 9.28512 10.072 70 9.302 96
0.007 —-0.539 -0.192 8.214
5 11.312 39* 11.270 23 11.298 28 12.126 07 11.31308

-0.006 -0.379 -0.131 7.186




WKB and SwKB approximations 5769

Table 4. WKB, sWKB and exact eigénenergies for the potential {3} for g =—1. The first
line against each quantumn number gives the energies and the second one, the corresponding
percentage errors. The best values are marked by an asterisk. Region IV of the parameters.

£ A n IWKB 2WKBRB 1SWKB 2SWKB Exact
2.05 —-0.205 0 0.957 11 0.9731 81 0.658 87 097011* 0.965 04
~0.821 0.909 -31.726 0.526
1 2.937 39% 296725 2.35083 2.498 0D 293389
0.119 1.137 -2.831 ~14.857
2 4.929 82* 4.954 49 4.88312 5.400 33 4.930 87
-0.021 0.479 -0.969 9.521
3 6.52553* 6.944 80 6.89502 785215 6924 83
0.010 0.288 -0.431 13.391
4 $.922 68* 8.937 94 8.900 70 9.978 74 8.92296
—0.003 0.168 —-0.250 11,832
5 10.920 62* 10.93301 10.903 79 11.996 62 10.920 38
0.002 0.116 -~0.152 9.855
2,10 —0.420 0 0.913 02 0.957 42 0.613 14 0.927 68* 0.52903
-1.722 3.056 —34.002 ~0.144
1 2.87399* 293901 2.785 38 239031 2.866 75
0.253 2.521 —2.838 ~-16.619
2 4.859 00* 4.91093 48101 539243 4,861 26
-0.046 1.022 —-1.036 10.927
3 6.850 51* 6.890 57 6.81901 7.844 16 6.84503
0.022 0.606 ~0.438 14.529
4 8.844 B6™ 8.876 41 8.822 14 9.961 69 8.84547
-0.007 0.350 —0.264 12.619
5 10,840 77* 10.866 29 10.823 37 11.971 65 10.84028
0.005 0.240 —-0.156 10.437
2.15 —0.645 0 0.86779 0.95576 0.566 30 0.38291* 0.89198
—2.712 7.151 —36.512 -1.016
1 2.809 85* 291550 2912 2278 24 2,798 61
0.402 4.177 —2.840 —18.554
2 4.787 58* 4.869 38 4,738 07 5.389 00 4.791 18
—-0.075 1.632 -1.109 12.478
3 6.77496* 6.837 36 6.74246 7.837 34 6.772 64
0.034 0.956 —0.446 15721
4 8.766 57* 8.81543 8.743 10 9.94511 8.767 56
—0.011 0.546 —0.279 13431
5 10.760 49* 10.799 89 10,742 50 11.946 96 10.759 72
0.007 0.373 —0.160 11.034
2.20 -0.880 0 0.821 47 0.973 44 0.51834 0.83575* 0.85390
—3.798 13.999 —39.297 -2.125
1 2,74501* 2.896 86 2.652 08 216170 272951
0.568 6.131 — 2.837 —20.803
2 4.715 58* 4.829 87 4.664 62 5.39000 4.720 69
- 0.108 2313 —1.188 14.178
3 6.698 91* 6.785 18 6.665 38 7.831 358 6.695 67
0.048 1.337 —0.452 16.965
4 8.687 83* 8.75504 8.663 59 9.92897 8.68925
—0.016 0.757 —0.295 14.267
5 10.679 80* 10.733 83 10.661 21 11.922 53 10.678 1

0.010 0.516 —0.164 11.648
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Table 5. wkn, SWKB and exact eigenenergies for the potential (13). The first line against
each quantum number gives the energies and the second, the corresponding percentage
errors, except for n= 0. The best values are marked by an asterisk.

a b n 1WKB 2WKR 1SWKB 2SWKB Exact
0.60 0.10 0 -0.21523 —{.282 55 0.000 00* 0.000 00
1 297533 2.95930 312274 3.074 44* 3.066 19
-2.963 —3.486 1.844 0.269
2 7.12108 711282 7.242 06 7.196 57* 7.194 98
-1.027 ~1.142 0.654 0.022
3 11978 11 11.972 80 12.083 54 12,041 87* 12.041 13
—0.523 —0.567 0.352 0.006
4 17.428 06 17.424 26 17.52287 17.484 43* 17.483 96
—0.320 —-0.341 0.223 0.003
5 23.3972 23.3943 23.484 1 23.4483* 23.4480
—0.217 —0.229 0.154 0.001
6 29.8338 29.8315 299146 29.8810% 29.8807
—0.157 —0.165 0.113 0.001
7 36.6992 36.697 3 36.7750 36.7432* 36.7429
~0.119 -0.124 0.087 0.001
8 43.962 8 43.9612 44.034 4 44.004 2% 44,004 0
—0.094 -0.097 0.069 0.000
9 51.59%8 51.598 4 51.6679 51.6391* 51.638 8
-0.076 —0.078 0.056 0.001
10 59.589 6 59.5884 59.6547 59.627 0% 59.626 8
—0.062 —0.064 0.047 0.000
1.00 0.20 0 —0.269 49 =-0.35743 0.040 60* 0.000 60
1 4.729 85 4.704 10 4.925 34 4.868 56* 486110
-2.700 —3.230 1.322 0.153
2 11.028 21 11.014 23 11.191 49 11.134 49* 11.132 63
-0.938 —1.064 0.529 0.017
3 18.31073 18.301 52 18.454 36 18.400 58* 18.399 69
—0.483 -0.534 0.297 0.005
4 26,4190 26.4123 26.5490 26.498 5* 26,4979
~0.298 —-0.323 0.193 0.002
3 35.2529 35.2477 35.3725 35.3250* 35.3246
—0.203 ~0.218 0.136 0.001
6 44741 6 44.7374 44.8531 44.8081* 44.807 8
—0.148 —0.157 0.101 0.001
7 54.831 7 54.8283 54.936 6 54.8938* 54.893 5
-0.113 -0.119 0.079 0.001
8 65481 1 65.4782 65.5805 65.539 5* 65.5392
—0.08% ~0.093 0.063 0.000
9 76.6554 76.652 8 76.750 0 76.7107* 76.710 5
~0.072 -0.075 0.051 0.000
10 88.3257 88.3235 88.416 2 88.378 5* BB.378 2
—0.059 —-0.062 0.043 0.000
1.25 0.50 0 ~0.504 97 -0.659 27 0.000 00* 0.000 00
1 6.344 16 6.31053 6.681 74 6.56593* 6.543 97
—3.053 —-3.567 2.105 0.336
2 15358 16 1534117 15.63331 15.526 98* 15.523 19
—-1.063 -1.173 0.709 0.024
3 25974 5 25,9637 26213 5 26.1172* 26.1154
—0.540 -0,581 0.376 0.007
4 379237 379160 38.13% 1 38.049 8" 38.0437
-0.329 —-0.349 0.235 0.003
5 51.0384 51.0326 51.2347 51.1528* 51.1520

-0.222 -0.233 0.162 0.002
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Table 5. (continyed)
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a b n 1WKB 2WKB 1SWKB 28WKB Exact
6 65.2020 65.1973 65.384 2 65.307 5* 65.306 8
-0.160 —0.168 0.119 0.001
7 80.3269 80.3231 B0.49T 7 80.425 4* 80.424 7
-0.122 —-0.126 0.091 0.001
8 96.344 4 96.3412 96.505 7 96.437 1* 96,436 5
—0.096 ~0.099 0.072 0.001
9 113.199 113.196 113.352 113.287* 113.286
-0.077 —0.079 0.058 0.001
10 130.843 130.841 130.990 130.927* 130.926
~0.063 —0.065 0.049 0.001
2,00 1.00 0 —{0.655 52 ~0.863 80 0.000 00* 0.000 00
1 9.758 84 9,705 86 10.216 13 10.071 66* 10,048 89
~2.886 -3.414 1.664 0.227
2 23.1599 231321 23.5372 23.398 4* 233936
—-0.999 -1.118 0.614 0.021
3 38.796 0 38.778 1 391258 38.997 5* 389953
-0.51 -0.557 0.335 0.006
4 56.29990 56,2861 56.596 1 56,477 1* 564757
—0.313 —0.336 0,213 0.002
5 75.438 2 754283 75.7109 75.599 7 75.598 7
-0.212 —0.225 0.148 0.001
6 96.0517 96.043 7 96.3053 96.200 7* 96.199 8
—-0.154 —0.162 0.110 0.001
7 118.018 118.011 118.256 118.157* 118,156
-0.117 -0.123 0.085 0.001
3 141.241 141.235 141,466 141.372% 141.371
-0.092 —0.096 0.067 0.001
9 165.642 165.638 165.857 165.766* 165.766
—-0.075 -0.077 0.055 0.000
10 191.158 191,154 191,363 191.276* 191.275
—0.061 —-0.063 0.046 0.001
3.00 2.00 0 —0.887 40 ~1.173 69 0.000 00* 0.000 00
1 14.392 31 14.313 88 15.024 28 14.833 06* 14.805 64
-2.7192 -3.321 1.477 0.185
2 33.8371 33.7952 34,3618 34173 9* 34,1676
—0.967 -1.090 0.568 0.018
3 56.418 2 56.3909 56,8784 56,702 9% 56.6999
—-0.487 —0.545 0.315 0.005
4 81.6250 81.6053 82,040 4 81.876 6* 81.8748
—0.305 -0.329 0.202 0.002
5 109.136 109.121 109.518 109.364* 109,363
-0.208 -0.221 0,142 0.001
6 138.725 138.713 139.080 138.935" 138.934
—0.150 -0.159 0.105 0.0601
7 170.221 170211 170,555 170.417* 170414
-0.114 -0.120 0.082 0.001
8 203.4%0 203.482 203.807 203.675* 203.674
—-0.090 -0.094 0.065 0.000
9 238.423 238.415 238.724 238,598* 238,597
-0.073 —0.076 0.053 0.000
10 274.927 274.921 275.215 275.094* 275.093
—0.060 —0,063 0.044 0.000
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Table 6. wks, sWKR and exact cigenenergies for the potential (16). The first fine against
each quantum number gives the energies and the second, the corresponding percentage
errors, except for n = 0. The best values are marked by an agsterisk.

a b n 1WKB 2WKB 1SWKB 25WKR Exact
0.20 1.00 0 0.402 34 —0.018 09 0.000 00* 0.000 00
1 2.52155 2.57538 2.433 25 2.601 23* 2.64185
—4.554 -2.516 —6.003 -1.538
2 3.31131* 2.756 96 3.294 17 2.954 06 331881
—0.226 —16.929 —0.742 —106.99¢
3 4,096 84* 294401 4.08506 4.58995 411621
—-0.4M —28.478 -0.757 11.509
4 4.886 23* 3.25189 487733 5.525131 4.889 24
—0.062 —33.489 —0.244 13.010
5 5.678 26* 4.35424 567120 6.33562 5.684 93
-0.117 -23.407 —-0.242 11.446
6 6.472 06* 5.642 12 6.466 26 7.11221 647378
-0.027 —12.847 ~0.116 9.862
7 7.267 08* 6.621 84 7.262 20 7.87792 7.27017
—0.043 ~8.918 - 0.110 8.360
g 8.06297* 751657 8.058 79 8.64099 3.064 08
-0.014 —6.789 —0.066 7.154
9 8.859 52* 837576 8.85588 9.40475 8.861 21
—-0.019 -5.478 —0.060 6.134
10 9.656 56* 9.21693 9.653 36 10.170 56 9.65732
-0.008 —4.560 —0.041 5.315
0.50 1.00 0 0.34027 -0.000 28 0.000 00* 0.000 00
1 442175 4,422 94 4.328 07 4.448 29* 4,447 32
—0.575 —0.548 —2.681 0.022
2 6.957 36* 6.714 31 6.926 55 6.954 28 6.998 40
-0.586 —4,059 -1.027 —0.630
3 9,168 34* 8.650 64 9.15243 9.16767 9.178 49
-0.111 —-5.751 —0.284 -0.118
4 11.28661* 10.661 38 11.276 44 11.35430 11.294 90
-0.073 -5,609 —0.163 0.526
5 13.364 89* 12.75035 13.357 64 13.49805 13.368 48
-0.027 —4.624 —0.081 0.969
6 15.421 71* 14,863 80 15416 18 15.600 20 1542476
- 0,020 ~3.637 —-0.056 1.137
7 17.46541* 16.972 25 17.461 01 17.671 64 17.467 16
—0.010 -2.833 —0.035 1.171
3 19.500 41* 19.066 55 19.496 79 19,72196 19,501 90
—0.008 -2.232 —0.026 1.128
9 21.529 3* 21,1460 21.526 2 21.7579 21.5303
—0,005 -1,785 -0.019 1.057
10 23.553 6* 23.212 5 23.5510 23.7840 23,5544
—0.003 —-1.452 -0.014 0.975
1.00 1.0¢ 0 0.273 38 0.01065 0.000 00* 0,000 00
1 687633 6.844 49 6.76597 6.84708* 6.851 40
0.364 —{.101 —1.247 ~{.063
2 12.07995 12.034 63 12.031 83 12.09137* 12.102 41
—0.186 —0.560 —0.583 -0.091
3 16.728 38 16.590 83 16.70293 16.73027* 16.742 99
—0.087 —-0.905 —0.239 -0.076
4 211367 209213 211211 21.137 5* 211464
~0.046 -1,064 —-0.120 —0.042
5 254220 25.1620 25.4115 25.4331* 254283

—0.025 —1.047 «=0.066 0.019
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Table 6. {continued)

a b n 1WKB 2WKB 1SWKB 21SWKB Exact
6 29.635 6* 29.3574 29.628 0 29.6619 29.6400
—0.015 —0.953 ~0.040 0.074
7 33,803 2* 33.5236 33.7975 33.8452 33.806 3
—0.009 —0.836 ~0.026 0.115
8 37.9393* 37.667 7 379347 379955 37.9416
—0.006 -0.722 —0.018 0.142
9 42.0526* 41.793 9 42,0489 42,1207 420544
-0.004 —0.619 —0.013 0.158
10 46.149 0* 459051 46.1459 46.226 6 461504
-0.003 -0.532 —0.010 0.165
2.00 1.00 ¢ 0.198 45 0.009 20 0.000 00* 0.00000
1 11.262 17 11.206 §8* 11.15599 11.204 68 11.207 26
0.490 —0.003 —0.457 —0.023
2 21.1974 21.1805 21.1373 21.187 5* 21.1%06
0.032 —0.048 -0.252 -0.015
3 30,5015 304804 304646 30.502 4* 30.5063
—0.016 —0.085 -0.137 -0.013
4 39,4388 39.398¢ 394144 35.4398* 354454
—0.017 -0.118 -0.079 —0.014
5 48,148 5* 48.087 6 48.1315 48.1481 48.1546
—0.013 —0.139 —0.048 -0.013
6 56.708 0* 56.628 & 56.6955 56.7073 56.7131
—0.009 —0.149 -0.031 —0.010
7 65.163 1* 65.069 8 65.1536 65.163 6 65.167 3
—0.006 -0.150 ~0.021 —0.006
8 73.5424 734389 73.5349 73.5452* 73.5458
—0.005 ~0.145 -0.015 —0.001
9 £1.864 7 81.7546 81.858 7 81.8706 81.8675
—0.003 -0.138 -0.0i1 0.004
10 90.142 9% 90.029 0 90.1380 90.152 4 90.1452
—0.603 -0.129 -0.008 - 0.008

4.2. Second potential, equation (13)

The results for the second, third and fourth potentials are shown in tables 5, 6, and 7
respectively. The tabular arrangement of the results is similar to that of table 3. For
these three potentials, the ground state is zero and 1swkB gives the exact result. As
the ground-state energy is zero no percentage errors are shown for this level. For n >0
the percentage errors are shown immediately below the wke and swkB results. The
best value amongst the four wkn and swkB results is marked by an asterisk.

For the second potential we notice from table 5 that the inclusion of the second
term has led to a worsening in the energy value for wkB, but an improvement for the
swkB. The 1SWKB results are better than 1wkB results, and 25wkB results are better
ihan 2wk s resulis. Here also we find ithai the convergence of ihe SWKE series is beiter
than that of the wkB series. The 2swKkB results are the best in all cases.

4.3. Third potential, equation (16)

It can be shown that the Hamiltonian for this potential has a scaling property. If the
eigenvalue is known for a certain value of the ratio b/ a, eigenvalues for all other sets
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Table 7. wKkB, SWKB and exact eigenenergies for the potential (19). The first line against
cach quantum number gives the energies and the second, the corresponding percentage
errors, except for n = 0. The best values are marked by an asterisk.

a b n 1WKB 2WKB 1SWKB 2SWKB Exact

020 025 O 0.002 08 —0.000 01 0.000 00 0.000 00

1 0.893 65 0.891 57 0.891 59 0.891 59* 0.891 59
0.231 -0.002 0.000 0.000

2 1.768 19 1.766 33* 1.766 24 1.766 35* 1.766 34
0.105 -0.061 -0.006 0.001

3 2.626 07 2.624 61% 262429 2.62462* 2.624 61
0.056 0.000 -0.012 0.000

4 3.468 35 3.467 40% 3.466 80 3.467 40* 3.46739
0.028 0.000 -0.017 0.000

5 429675 4.296 33* 429547 4296 33* 4296 32
0.010 0.000 ~0.020 0.000

6 511345 5.113 49* 511244 5.113 49* 5.113 50
~0.001 0.000 ~0.021 0.000

7 592083 5.92118 592006 5.92120* 592123
-0.007 —0.001 ~0.020 ~0.001

8 6.72117 67217 6.720 62 6.721 74* 672178
-0.009 -0.001 -0.017 -0.001

9 7.516 50 751713 7.51613 7.51717* 7.51719
-0.009 -0.001 -0.014 0.000

10 8.308 48 8.300 14* 8.30825 8.309 18* 8.309 16
-0.008 0.000 -0.011 0.000

026 0.30 0 0.007 52 —0.000 16 0.000 00* 0.000 00

1 097623 0.968 86 0.969 03 0.969 03* 0.969 04
0742 -0.019 -0.001 -0.001

2 1.88071 1.876 50* 1.874 85 1.87652 1.876 38
0231 0.006 -0.082 0.007

3 2.727 37* 2.727 60 272349 272754 272736
0.000 0.009 -0.142 0.007

4 353328 3.53577 3.53123 3.53598* 3.53623
—0.083 -0.013 ~0.141 ~0.007

5 431771 432051 431688 432080* 432103
-0.077 -0.012 ~0.096 ~0.005

6 5.094 11 5.007 34 509392 5.097 06* 5.096 47
-0.046 0.017 -0.050 0.012

7 5.869 39 5.873 56 5.869 51* 5.87230 587076
-0.023 0.048 -0.021 0.026

8 6.646 51 6.651 61 6.646 73* 664929 6.64719
-0.010 0.066 —0.007 0.032

9 7.426 40 7.43201 7.426 64 1.42879 7.426 67
-0.004 0.072 0.000 0.029

10 8.20 14* 8.21472 8.209 37 8.21088 8.209 19
-0.001 0.067 0.002 0.021

020 040 0 0.02518 ~0.00125 0.000 00* 0.000 00

1 L1102 1.088 98 1.089 73 1.000 68* 1.090 59
1.873 -0.148 -0.079 0.008

2 1.95951 1972424 195294 197410 197194
-0.610 0.024 -0.964 0.110

3 270732 272374 2.707 02 2.72164* 272231
-0.551 0.053 —0.562 -0.025

4 3.45531 3.49070 3.456 04% 347018 3.456 80
~0.043 0981 -0.022 0.387

5 4.21691* 4.251 63 421755 422513 4216 16

0.018 0.841 0.033 0.213
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Table 7. (continued)
a b n IWKB 2WKB 1SWKB 2SWKB Exact
6 4989 49* 5.011 90 4.989 89 4,988 03 498897
0.010 0.460 0018 —-0.019
7 5.769 58* 5.776 59 5.769 80 5.759 41 5.768 92
0.011 0.133 0.015 —0.165
8 6.554 66* 6.547 37 6.55477 6.538 38 6.55420
0.007 —-0.104 0.009 —0.241
9 7.343 09* 7.324 21 7.343 13 7.323 54 734278
0.004 —0.253 0.005 —0.262
10 8.13382* 8.106 44 8.133 82% 8.113 46 313360
0.003 -0.334 0.003 —0.248
0.20 0.5¢ 0 0.048 77 —0.003 21 0.000 00* 0.000 00
1 1.198 55 1.197 53 1.168 14* 1,185 62 117555
1.957 1.870 —0.630 0.857
2 1.919 25 1.991 92 1.919 35 1.96227* 1.964 71
-2.314 1.385 —-2.309 -0.124
3 2.642 59* 2.770 40 2.643 67 2.676 69 263941
0120 4.963 0.161 1412
4 339717 . 3.459 60 339759 1389 76" 139219
0.147 1.987 0.159 —-0.072
5 4.168 90 4.164 44 4.168 92* 4.13218 4.169 86
-0.023 -0.130 ~-0.023 —0.%04
6 4949 39 4.896 37 4.949 73* 4,900 54 4,948 66
0.025 -1.057 0.022 —0.972
7 573614 565270 533593* 5,687 06 5.73595
0.003 —-1.451 0.000 —0.852
8 6.525 63* 6.427 57 6.52541 6.484 50 6.52553
0.002 -1.501 —0.002 —0.629
9 7.317 24 7.21511 7.317 03* 7.287 46 731708
0.002 -1.394 —0.001 —0.405
10 8.110 35* 3.010 66 811015 8.092 51 811033
0.000 -1.229 ~0.002 —0.220
0.20 6.60 ] 007615 ~§.005 0% 0.000 00 4.000 00
1 1.213 83* 1.212 51 1.198 42 1.284 60 1.230 77
—1.376 —1.484 —-2.628 4374
2 1.87249 2.18935 1.873 79* 197289 1.916 48
—2.295 14,238 -2.228 2.943
3 2.605 38 271977 2.605 36 2.581 38* 2.578 50
1.042 5.479 1.042 0.112
4 3.369 35* 331678 3.36876 3.279 85 3.374 34
—0.148 -1.706 —0.165 -2.800
5 4.147 11* 3.990 80 4.146 43 4,046 59 4.147 43
~0.008 -3.777 —-0.024 —2.431
6 4.931 81 4,728 31 4.93117* 485115 493025
0.032 —0.4096 0.019 —1.604
7 5.720 46* 5.508 20 5.71990 567034 5.721 51
-0.018 —3.728 —0.028 —0.894
5 6.51161 6.311 59 6.51111* 6.491 22 651109
0.008 —3.064 0.000 —0.305
9 7.304 45* 7.12575 7.304 02 7.308 64 7.304 66
—0.003 —2.449 —0.009 0.054
10 8.008 51* 7.943 60 8.09813 8.121 45 8.098 49
0.000 -1.513 -0.004 0.284
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of the parameters a and b which have the same value for the ratio b/ a can be obtained
by multiplying the known eigenvalue by a function of a and b. Because of the scaling
property, the parameter b was kept fixed at 1 and a was given values from 0.2 to 1.0.
For this potential we find a complicated pattern in the results. For the first two sets
we notice from table 6 that 2wks results become worse than the 1wke ones after n =1,
and a similar statement holds for the swkg results. For n <2, the 2swks results are
the best, but above this the 1wKg results are the best. But at @ = 1.0, b= 1.0, the pattern
changes. 2wWKB is worse than 1wxB for n > 1, but the dividing line for the swkn case
is now at n=3. Also the pattern of ‘best results’ is different from the previous two
cases. For n <6, 2swKkB results are the best, but above it, 1wKkB ones are the best. The
pattern of results for @ =2, b =1 is similar to that of the previous set, except for two
minor differences.

4.4. Fourth potential, equation (19)

The Hamiltonian for this potential also has a scaling property similar to that of the
potential (16). Hence the parameter a was kept fixed at 0.2 and b was given values
between 0.25 and 0.6. We notice from table 7 that in the first set (b =0.25), the 2wkB
results are better than the 1wKE ones, and a similar situation holds for the swkB results.
But in the next set, we notice that for n <7, 2wk is better than 1wk, and 2swkas is
better than 1swkB, but from n =7 onward the reverse pattern is observed. This dividing
line shifts to smaller n values as b is further increased. At b =0.6 it has reached n =1.
The pattern of ‘best results’ is quite complicated and is best seen by referring to the
asterisks in table 7.

5. Conclusion

The results presented in this paper show that while in certain situations the effect of
the second term in the wkB and swkB approximations may be uniform and the
convergence of the SwkB series may be better than the wkBs series, these are by no
means universal results. In general, the effect of the second term in the wks and swks
approximations depends on all the factors involved, namely the potential, the para-
meters involved and the quantum number. No simple generalizations are possible. In
some cases 1SWKB can be better than 1wkB, and 2swkB can be better than 2wks but
the reverse can be true in some other cases.
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