Relative convergences of the WKB and SWKB approximations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 255761
(http://iopscience.iop.org/0305-4470/25/21/029)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:31

Please note that terms and conditions apply.

Relative convergences of the wкв and swкв approximations

Y P Varshni
Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

Received 5 August 1991, in final form 29 May 1992

Abstract

The relative convergences of the wKB and SWKB approximations are examined by calculating the eigenenergies for four potentiais by one- and two-term wKB and swKB approximations. Exact eigenenergies for these four potentials are also calculated by a numerical integration of the Schrödinger equation. Varied results are found for the four potentials. It is found that in general the effect of the second term in the wKB and swKB approximations depends on the potential, the parameters involved and the quanturn number of the state. No simple generalizations are possible.

1. Introduction

The application of supersymmetric quantum mechanics (SUSYQM) (Witten 1981, Cooper and Freedman 1983) to bound state problems has led to a number of interesting results. Comtet, Bandrauk and Campbell (1985) showed that the structure of SUSYQM motivates a modification of the conventional wкв quantization condition. They further found that this modified condition, now called the supersymmetric wKB (SWKB) quantization rule, gives the exact energy eigenvalues in the first order for several solvable potentials. Khare (1985) found similar results for three other solvable potentials. Dutt et al (1986) showed that the leading order swKB condition will always reproduce the exact bound-state spectrum for any shape-invariant potential (Gedenshtein 1983). Raghunathan et al (1987) showed that for the Rosen-Morse potential, which is a solvable potential, all higher-order corrections in the swkb scheme vanish. Dutt et al (1991) have reviewed the lowest order swkb approximation. The question of the effect of higher-order swKB approximation for a potential which is not exactly solvable was considered by Dutt et al (1987), who compared the results for a potential due to Murrell (1969) by one- and two-term swkb with one- and two-term wкb. They found that one-term swkb values are much closer to the exact values than the one-term wKB values. The trend continued even for the two-term values indicating that perhaps the swkb expansion (in orders of \hbar^{2}) has better convergence than the corresponding one in the old wKB approach. Higher-order terms in the conventional wks method had been obtained by Kesarwani and Varshni (1978, 1980, 1981, 1982a) and this was done for the swkb method by Adhikari et al (1988). These authors obtained energy eigenvalues by swкв method up to order \hbar^{6} for the following two potentials

$$
\begin{align*}
& V(x)=x^{2}+\frac{1}{9} x^{6} \tag{1}\\
& V(x)=x^{10 / 3}+\frac{5}{3} x^{2 / 3} \tag{2}
\end{align*}
$$

Results for the potential (1) were also obtained by Vasan et al (1988).

A number of authors (Dutt et al 1987, Roy et al 1988, Fricke et al 1988, Khare and Varshni 1989, DeLaney and Nieto 1990) have compared one-term swkb results with one-term wKB results for a variety of potentials. The present situation may be summarized as follows. For shape-invariant solvable potentials, swkb gives exact results in all cases, while wKB gives exact results only for the harmonic oscillator and the Morse potential. For all other types of potentials, broadly speaking, for $n=0$, the swKb results are better than the wкв ones in most cases, for $n=1,2,3$ the results are mixed, for $n>3$ for some potentials swke is better, while for others wKb is better. One, of course, has to bear in mind that given any potential, the wKB answer can be immediately computed, while the swKB answer can only be obtained if we also know the corresponding superpotential $W(x)$ which may not always be known.

Clearly the vexed question of the role played by higher-order terms comes to mind. There is no easy way to examine the relative convergences of the wKb and swKB approximations. Detailed investigations are required with individual potentials. The use of the term 'convergence' in this context needs some qualification and clarification. It is known that, in general, the wkb series does not converge but is, instead, an asymptotic expansion (Birkhoff 1933, Kemble 1958, Bohm 1951, Bender and Orszag 1978). This means that the magnitude of the terms may diminish up to a certain term but after that it may begin to increase. This would mean that for any given value of n, successive approximations to the nth eigenvalue obtained by taking more and more terms should improve to some maximal accuracy and then become worse. Examples of such behaviour have been previously recorded (Bender and Orszag 1978, Kesarwani and Varshni 1981, 1982a, b, c). Thus the concept of convergence is meaningful only up to and including the term inclusion of which leads to an improvement in the eigenvalue. Here we consider this question in a limited form. What will happen if we take the second term in both swKs and wKB into account? The results will indicate which of the two series has the better convergence. The only investigation that throws some light on this question is that of Dutt et al (1987) who compared two-term swkb results with two-term wKB results for the Murrell potential. It turned out that both sets of results were almost the same and every close to the 'exact' results. In the present paper we obtain eigenvalues by the two-term swкв and wKв approximation for four different potentials in order to obtain better evidence to answer the aforesaid question. In this paper we shall only consider single-well potentials. Some of the potentials examined in this paper become double- or triple-well potentials for a range of values of the parameters concerned; we shall exclude such values of the parameters. We shall use units such that $\hbar=2 m=1$.

2. The four potentials

2.1. First potential

The non-polynomial oscillator represented by the potential

$$
\begin{equation*}
V(x)=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right) \tag{3}
\end{equation*}
$$

where λ and g are parameters, has been investigated by a variety of techniques in recent years (Varshni 1987 and references therein, Adhikari et al 1991 and references given therein, Bose and Varma 1989, Filho and Ricotta 1989, Fu-Bin 1989, Estrin et al 1990, Ifantis and Panagopoulos 1990, Pons and Marcilhary 1991). Roy et al (1988)
showed that potential (3) becomes supersymmetric provided λ and g are constrained by a certain relation. Roy et al (1988) suggested the following superpotential

$$
\begin{equation*}
W(x)=\mu x-2 g x /\left(1+g x^{2}\right) \tag{4}
\end{equation*}
$$

In SUSYQM

$$
\begin{equation*}
V_{ \pm}(x)=W^{2}(x) \pm W^{\prime}(x) \tag{5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
V_{-}(x)=\mu^{2} x^{2}+\frac{2 g+4 \mu}{1+g x^{2}}-5 \mu \tag{6}
\end{equation*}
$$

If (6) and (3) are to be the same, then we must have

$$
\begin{align*}
& -\lambda / g=(2 g+4 \mu) \tag{7}\\
& \mu= \pm 1 . \tag{8}
\end{align*}
$$

These are the constraints that λ and g must satisfy.
The energy of the non-polynomial oscillator (E) is connected to E_{-}obtained from $W(x)$ by

$$
\begin{equation*}
E=E_{-}+5 \mu+\lambda / g . \tag{9}
\end{equation*}
$$

When $\mu=+1$, an exact analytic expression for the ground state can be obtained:

$$
\begin{equation*}
E^{0}=\lambda / g+5 \tag{10}
\end{equation*}
$$

But for $\mu=-1, E_{-} \neq 0$, and an exact expression is not possible.

2.2. Supersymmetric potentials

We shall generate the other three potentials by supersymmetric quantum mechanics. There are two ways of doing it. Either one can start with a suitable form of the ground state wavefunction or one can start with the superpotential (Boya et al 1987, Dutt et al 1988, Roy et al 1991). In the latter case one has to ensure that the corresponding wavefunction is normalizable. We shall use the former procedure.

2.3. Second potential

We assume the ground-state wavefunction to be given by

$$
\begin{equation*}
\phi_{0}(x)=\exp \left(-a x^{2}-b x^{4}\right) \tag{11}
\end{equation*}
$$

where a and b are constants. Then the superpotential $W(x)$ is obtained from

$$
\begin{align*}
W(x) & =-\phi_{0}^{\prime}(x) / \phi_{0}(x) \\
& =2 a x+4 b x^{3} . \tag{12}
\end{align*}
$$

Thus the potential is

$$
\begin{align*}
V_{-}(x) & =W^{2}(x)-W^{\prime}(x) \\
& =\left(4 a^{2}-12 b\right) x^{2}+16 a b x^{4}+16 b^{2} x^{6}-2 a . \tag{13}
\end{align*}
$$

The ground-state energy for this potential is of course zero. If $a^{2}>3 b$, potential (13) has one minimum, and when $a^{2}<3 b$ it has three minima. We are interested in the one-minimum case only and so we shall choose a and b such that $a^{2}>3 b$. Potentials of the type $V(x)=\alpha x^{2}+\beta x^{4}+\gamma x^{6}$ have been investigated by a variety of methods. The following are a few of the recent references: Znojil (1986), Dutta and Willey (1988), Burrows et al (1989), Adhikari et al (1989), Chaudhuri and Mondal (1989, 1991), Singh et al (1990).

2.4. Third potential

$\phi_{0}(x)=\frac{\exp \left(-a x^{2}\right)}{\left(1+b x^{2}\right)}$
$W(x)=\frac{2 x\left(a+b+a b x^{2}\right)}{1+b x^{2}}$
$V_{-}(x)=\frac{2\left[-a-b+\left(2 a^{2}+3 b^{2}+2 a b\right) x^{2}+\left(3 a b^{2}+4 a^{2} b\right) x^{4}+2 a^{2} b^{2} x^{6}\right]}{\left(1+b x^{2}\right)^{2}}$.
If $b / a>7.56596$, this potential also becomes a three-minimum potential. To avoid it, we have chosen a and b such that $b / a<7.56596$.

2.5. Fourth potential

$$
\begin{align*}
& \phi_{0}(x)=\exp \left(-a x^{2}\right)+\exp \left(-b x^{2}\right) \tag{17}\\
& W(x)=\frac{2 x\left\{a+b \exp \left[(a-b) x^{2}\right]\right\}}{1+\exp \left[(a-b) x^{2}\right]} \tag{18}\\
& V_{-}(x)=\frac{\left\{-2 a+4 a^{2} x^{2}+\left(-2 b+4 b^{2} x^{2}\right) \exp \left[(a-b) x^{2}\right]\right\}}{\left\{1+\exp \left[(a-b) x^{2}\right]\right\}} . \tag{19}
\end{align*}
$$

The expressions are symmetric with respect to a and b. We shall take $b>a$. If $b / a>3.68$, this potential also develops three minima. Hence a and b were given values such that $b / a<3.68$.

3. Two-term wкb and swke

The two-term wкb (Krieger et al 1967, Kesarwani and Varshni 1978) and swkb (Dutt et al 1987, Adhikari et al 1988) expressions have been derived by previous workers, so here we shall merely quote them.
WKB: $\quad \int_{a}^{b}(E-V)^{1 / 2} \mathrm{~d} x-\frac{1}{24} \frac{\mathrm{~d}}{\mathrm{~d} E} \int_{a}^{b} \frac{V^{\prime \prime}}{(E-V)^{1 / 2}} \mathrm{~d} x=\left(n+\frac{1}{2}\right) \pi$
where a and b are the turning points defined by $E-V=0$.
sWKB: $\quad \int_{c}^{d}\left[E_{-}-W^{2}\right] \mathrm{dx}-\frac{1}{24} \int_{c}^{d} \frac{\left[2 W^{\prime 2}-W W^{\prime \prime}\right]}{\left(E_{-}-W^{2}\right)^{3 / 2}}=n \pi$
where c and d are the turning points of $E_{-}-W^{2}=0$. The one-term results are obtained by dropping the second term on the left-hand side of equations (20) and (21).

4. Results and discussion

The numerical method of Barwell et al (1979) was used to evaluate the second integral on the left-hand side of equations (20) and (21). An iterative method was used to calculate the energy. The 'exact' energy was also calculated by numerical integration of the Schrödinger equation. We shall use the following acronyms: 1wki for one-term WKB, 2 WKR for two-term wKB, and similarly for the swKr.

4.1. First potential, equation (3)

Equations (7) and (8) put important constraints on the possible values of λ and g. First let us consider the case when $\mu=+1$. Then equation (7) becomes

$$
\begin{equation*}
-\lambda / g=2 g+4 \tag{22}
\end{equation*}
$$

For positive g, λ is negative. λ is acceptable between 0 and -1 , but if $\lambda<-1$, then potential (3) becomes a double minimum potential. $\lambda=-1$ when $g=0.224745$. Thus the allowed values are $0.224745>g \geqslant 0$ and $0 \geqslant \lambda>-1$. We shall call it region I. Next we consider the case when $\mu=-1$. Equation (7) becomes

$$
\begin{equation*}
-\lambda / g=2 g-4 \tag{23}
\end{equation*}
$$

By arguments similar to those given for the $\mu=+1$ case, it can be readily seen that these are three possible allowed regions:
II. $1 \geqslant g \geqslant 0,2 \geqslant \lambda \geqslant 0$;
III. $2 \geqslant g>1,2>\lambda \geqslant 0$;
IV. $2.224745>g>2,0>\lambda>-1$.

Roy et al (1988) have considered regions I and II only. Here we shall present results for all the four allowed regions. In regions I and II, Roy et al (1982) have used certain sets of values of g and λ for comparing iwKB and iswKb results for the potential (3) and the same sets of values of g and λ were used by us so that the results could be compared. The results are shown in table 1 for $\mu=+1$ (region I), and in table 2 for $\mu=-1$ (region II). When $\mu=+1, E_{-}$for the ground state is zero, and the iswKb gives the exact energy. In such a situation, the numerical evaluation of the second term on the left-hand side of equation (21) is subject to considerable uncertainties because there is a singularity right at $E_{-}=0$ and the region of integration is very small. Hence in the 2 SWKb column in table 1 , for $n=0$, the energy shown is from 1 SWKb and it is enclosed in parentheses. When $\mu=-1$, in equation (21), on the right-hand side, n is replaced by $(n+1)$.

The results for regions III and IV are shown in tables 3 and 4 respectively. The tabular arrangement of the results is slightly different from that of tables 1 and 2 , because in tables 3 and 4 we also include the iwke and iswke results. The percentage errors with respect to the exact energy are shown immediately below the wкв and swkb results. The best value amongst the four wкв and swkb results is marked by an asterisk. We shall discuss tables 1 and 2 together.

Tables 1 and 2. A comparison of the two-term results obtained here with the one-term results obtained by Roy et al (1988) shows that in practically all cases the inclusion of the second term has led to an improvement in the energy, both for wki and swke. Sometimes, the improvement is indeed remarkable, for example, for $g=1, \lambda=2, n=0$, the error in the one-term SWKB energy was 8.236%, and with two-terms, it is only

Table 1. $2 \mathrm{WKB}, 2$ SWKB and exact eigenenergies for the potential (3) for $\mu=+1$ and $E_{-}=0$ for the ground state. Region I of the parameters.

g	λ	n	2WKB	Percentage error	2SWKB	Percentage error	Exact
0.05	-0.205	0	0.89992	-0.009	(0.900 00)	0.000	0.90000
		1	2.71450	-0.001	2.71454	0.001	2.71452
		2	4.55460	0.000	4.55462	0.000	4.55460
		3	6.41441	0.000	6.41441	0.000	6.41440
		4	8.28994	0.000	8.28993	0.000	8.28992
		5	10.17831	0.000	10.17829	0.000	10.17828
0.10	-0.420	0	0.79824	-0.220	(0.800 00)	0.000	0.80000
		1	2.45589	0.008	$2.45612^{\text {a }}$	0.017	2.45570
		2	4.19815	0.006	4.19805	0.004	4.19790
		3	5.99185	0.007	5.99154	0.002	5.99140
		4	7.82079	0.009	7.82028	0.002	7.82010
		5	9.67550	0.010	9.67479	0.003	9.67454
0.15	-0.645	0	0.68987	-1.447	(0.700 00)	0.000	0.70000
		1	2.22234	0.128	2.22196	0.111	2.21950
		2	3.90653	0.051	3.90487	0.009	3.90452
		3	5.66794	0.056	5.66544	0.012	5.66476
		4	7.47778	0.055	7.47452	0.012	7.47365
		5	9.32098	0.054	9.31701	0.011	9.31598
0.20	-0.880	0	0.57118	-4.804	(0.60000)	0.000	0.60000
		1	2.01495	0.643	2.00970	0.381	2.00208
		2	3.66449	0.213	3.65709	0.011	3.65670
		3	5.40902	0.203	5.40012	0.039	5.39804
		4	7.21023	0.173	7.20001	0.031	7.19780
		5	9.04917	0.152	9.03779	0.026	9.03546

${ }^{\text {a }}$ Indicates that the 2 SWKB result is poorer than the 2 WKB result.
0.067%. The cases where the 2 swкb energy is worse than the 2 wкв energy are shown by a superscript a in the 2SWKB energy column. In the one-term results there were only 15 cases (out of 60) for which the swKb results were better than the wKB ones; with two terms this number has shot up to 52 . In two additional cases, the 2 swKB is only marginally worse than 2 wkb . It clearly shows that the second-term plays a vital role and the convergence of the swкв series appears to be substantially better than that of the WKB series, at least for the regions I and II of the potential (3).

It will be noticed from tables 1 and 2 that there is a tendency for the errors to increase with the increase in the numerical magnitudes of g and λ. It is of some interest to note that of the eight cases for which the 2 SWKB results are poorer than the 2 WKB ones, five are for $n=1$.

Table 3. For the wkb results it will be noticed that the inclusion of the second term has led to an improvement in the energy only for $n=0$ state for the four sets of parameters, otherwise, in all other cases it worsens the energy indicating that the wKB series becomes divergent for $n>0$. For the swkb cases we notice that for $n=0$ there is a large error in the energy which decreases very sharply with the inclusion of the second term, inasmuch as the 2 swкв results are the best ones for $n=0$. For the first set of parameters, the inclusion of the second term has improved the energy for $n=1$ and 2 also, but for the other three sets of parameters the 2 SWKB results are worse than

Table 2. $2 \mathrm{WKB}, 2 \mathrm{WWKB}$ and exact eigenenergies for the potential (3) for $\mu=-1$ and $E_{\sim}=0$ for the ground state. Region II of the parameters.

g	λ	n	2WKB	Percentage error	2SWKB	Percentage error	Exact
0.10	0.380	0	1.15719	0.016	1.15697	-0.004	1.15701
		1	3.44022	0.001	$3.44011^{\text {a }}$	-0.002	3.44017
		2	5.66984	0.000	$5.66979^{\text {a }}$	-0.001	5.66985
		3	7.85997	-0.001	7.85996	-0.001	7.86003
		4	10.02023	-0.001	10.02027	-0.001	10.02037
		5	12.15741	-0.002	12.15751	-0.001	12.15765
0.20	0.720	0	1.26269	0.084	1.26126	-0.030	1.26163
		1	3.70334	0.000	$3.70295^{\text {a }}$	-0.011	3.70335
		2	6.01416	-0.008	6.01417	-0.008	6.01466
		3	8.24489	-0.015	8.24538	-0.009	8.24610
		4	10.42363	-0.021	10.42487	-0.009	10.42582
		5	12.56690	-0.026	12.56914	-0.008	12.57019
0.30	1.020	0	1.33849	0.198	1.33488	-0.072	1.33584
		1	3.87324	-0.017	$3.87264^{\text {a }}$	-0.033	3.87390
		2	6.20886	-0.038	6.20960	-0.027	6.21125
		3	8.43865	-0.062	8.44162	-0.026	8.44385
		4	10.60731	-0.079	10.61349	-0.020	10.61565
		5	12.73777	-0.088	12.74762	-0.010	12.74895
0.40	1.280	0	1.39373	0.351	1.38725	-0.116	1.38886
		1	3.98186	-0.059	$3.98135^{\text {a }}$	-0.072	3.98423
		2	6.31379	-0.104	6.31669	-0.058	6.32036
		3	8.52699	-0.152	8.53604	-0.046	8.53995
		4	10.67822	-0.175	10.69516	-0.017	10.69694
		5	12.79325	-0.180	12.81817	0.015	12.81629
0.50	1.500	0	1.43337	0.538	1.42354	-0.152	1.42570
		1	4.04564	-0.137	4.04569	-0.136	4.05120
		2	6.35797	-0.212	6.36514	-0.100	6.37150
		3	8.54887	-0.284	8.56875	-0.052	8.57319
		4	10.68198	-0.300	10.71654	0.022	10.71415
		5	12.78299	-0.289	12.83093	0.085	12.82001
1.00	2.000	0	1.47574	1.964	1.44829	0.067	1.44732
		1	3.94697	-1.286	3.95428	-1.103	3.99840
		2	6.10017	-1.268	6.16767	-0.175	6.17849
		3	8.19577	-1.195	8.35430	0.716	8.29490
		4	10.27030	-0.947	$10.49805^{\text {a }}$	1.250	10.36848
		5	12.33122	-0.753	$12.60020^{\text {a }}$	1.412	12.42476

${ }^{\text {a }}$ Indicates that the 2 SWKB result is poorer than the 2 WKB result.
the iswkr ones for $n>0$. It is of some interest to see that for $n>0$, the 1 wkb results are the best.

Table 4. Broadly speaking the pattern of the results is similar to that in table 3, but there are some important differences. Here all 2 WKB results are worse than the 1 wKB results. Like the previous case the iswni energy for $n=0$ has a large error for all the four sets of parameters, and the error is sharply reduced with the inclusion of the second term, making the 2 SwKb results the best ones. However, for $n>0$ the 2swkb results are worse than the 1 swkb ones in all other cases. Here also we find that for $n>0$, the 1 wкв results are the best ones.

Table 3. wкв, swкs and exact eigenenergies for the potential (3) for $\mu=-1$. The first line against each quantum number gives the energies and the second one, the corresponding percentage errors. The best values are marked by an asterisk. Region III of the parameters.

g	λ	n	1WKB	2WKB	1SWKB	2SWKR	Exact
1.20	1.92	0	1.48250	1.43806	1.24873	1.40747^{*}	1.40135
			5.791	2.620	-10.891	0.437	
		1	3.84431^{*}	3.78563	3.78387	3.78805	3.86510
			-0.538	-2.056	-2.102	-1.994	
		2	5.992 91*	5.88851	5.96450	5.99711	5.99156
			0.023	-1.720	-0.452	0.093	
		3	8.078 01*	7.96403	8.06082	8.21927	8.08183
			-0.047	-1.458	-0.260	1.701	
		4	10.13488^{*}	10.02684	10.12307	10.37609	10.13498
			-0.001	-1.067	-0.118	2.379	
		5	12.1763^{*}	12.07866	12.16759	12.47501	12.17758
			-0.010	-0.812	-0.082	2.442	
1.40	1.68	0	1.40239	1.37091	1.14434	1.344 34*	1.33135
			5.336	2.972	-14.047	0.976	
		1	3.669 34*	3.58764	3.60387	3.56709	3.69104
			-0.588	-2.801	-2.362	-3.358	
		2	$5.77503 *$	5.65668	5.74315	5.81574	5.77198
			0.053	-1.998	-0.499	0.758	
		3	7.835 15*	7.71835	7.81538	8.09421	7.83900
			-0.049	-1.539	-0.301	3.256	
		4	9.875 21*	9.77071	9.86140	10.26206	9.87473
			0.005	-1.053	-0.135	3.922	
		5	11.904 37*	11.81325	11.89402	12.35260	11.90557
			-0.010	-0.775	-0.097	3.755	
1.60	1.28	0	1.29348	1.27115	1.01756	1.259 28*	1.23995
			4.317	2.516	-17.936	1.559	
		1	3.466 29*	3.37385	3.39528	3.29642	3.48491
			-0.534	-3.187	-2.572	-5.409	
		2	5.533 25*	5.42245	5.49741	5.64404	5.52952
			0.067	-1.936	-0.581	2.071	
		3	7.571 22*	7.47093	7.54854	7.99041	7.57459
			-0.045	-1.369	-0.344	5.490	
		4	9.596 49*	9.51088	9.58044	10.16074	9.59569
			0.008	-0.884	-0.159	5.889	
		5	11.61486*	11.54230	11.60272	12.23611	11.61592
			-0.009	-0.634	-0.114	5.339	
1.80	0.72	0	1.15842	1.13952	0.87018	1.149 60*	1.12904
			2.602	0.928	-22.927	1.821	
		1	3.241 61*	3.16833	3.16428	2.97631	3.25300
			-0.350	-2.603	-2.727	-8.506	
		2	5.273 54*	5.19992	5.23321	5.50263	5.27069
			0.054	-1.343	-0.711	4.401	
		3	7.291 63*	7.22972	7.26568	7.91291	7.29378
			-0.029	-0.878	-0.385	8.488	
		4	9.303 65*	9.25279	9.28512	10.07270	9.30296
			0.007	-0.539	-0.192	8.274	
		5	11.312 39*	11.27023	11.29828	12.12607	11.31308
			-0.006	-0.379	-0.131	7.186	

Table 4. wKB, swKB and exact eigenenergies for the potential (3) for $\mu=-1$. The first line against each quantum number gives the energies and the second one, the corresponding percentage errors. The best values are marked by an asterisk. Region IV of the parameters.

g	λ	n	1WKB	2WKB	1SWKB	2SWK	Exact
2.05	-0.205	0	0.95711	0.97381	0.65887	0.9701^{*}	0.96504
			-0.821	0.909	-31.726	0.526	
		1	2.937 39*	2.96725	2.85083	2.49800	2.93389
			0.119	1.137	-2.831	-14.857	
		2	4.929 82*	4.95449	4.88312	5.40033	4.93087
			-0.021	0.479	-0.969	9.521	
		3	6.925 53*	6.94480	6.89502	7.85215	6.92483
			0.010	0.288	-0.431	13.391	
		4	8.922 68*	8.93794	8.90070	9.97874	8.92296
			-0.003	0.168	-0.250	11.832	
		5	10.92062^{*}	10.93301	10.90379	11.99662	10.92038
			0.002	0.116	-0.152	9.855	
2.10	-0.420	0	0.91302	0.95742	0.61314	0.927 68*	0.92903
			-1.722	3.056	-34.002	-0.144	
		1	2.873 99*	2.93901	2.78538	2.39031	2.86675
			0.253	2.521	-2.838	-16.619	
		2	4.85900^{*}	4.91093	4.81091	5.39243	4.86126
			-0.046	1.022	-1.036	10.927	
		3	6.850 51*	6.89057	6.81901	7.84416	6.84903
			0.022	0.606	-0.438	14.529	
		4	8.844 86*	8.87641	8.82214	9.96169	8.84547
			-0.007	0.350	-0.264	12.619	
		5	10.840 77*	10.86629	10.82337	11.97165	10.84028
			0.005	0.240	-0.156	10.437	
2.15	-0.645	0	0.86779	0.95576	0.56630	$0.88291 *$	0.89198
			-2.712	7.151	-36.512	-1.016	
		1	2.809 85*	2.91550	2.71912	2.27824	2.79861
			0.402	4.177	-2.840	-18.594	
		2	4.78758^{*}	4.86938	4.73807	5.38900	4.79118
			-0.075	1.632	-1.109	12.478	
		3	$6.77496 *$	6.83736	6.74246	7.83734	6.77264
			0.034	0.956 ,	-0.446	15.721	
		4	8.76657^{*}	8.81543	8.74310	9.94511	8.76756
			-0.011	0.546	-0.279	13.431	
		5	10.76049^{*}	10.79989	10.74250	11.94696	10.75972
			0.007	0.373	-0.160	11.034	
2.20	-0.880	0	0.82147	0.97344	0.51834	$0.83575 *$	0.85390
			-3.798	13.999	-39.297	-2.125	
		1	2.74501*	2.89686	2.65208	2.16170	2.72951
			0.568	6.131	- 2.837	-20.803	
		2	4.715 58*	4.82987	4.66462	5.39000	4.72069
			-0.108	2.313	-1.188	14.178	
		3	6.69891*	6.78518	6.66538	7.83158	6.69567
			0.048	1.337	-0.452	16.965	
		4	8.687 8 3*	8.75504	8.66359	9.92897	8.68925
			-0.016	0.757	-0.295	14.267	
		5	10.67980^{*}	10.73383	10.66121	11.92253	10.67871
			0.010	0.516	-0.164	11.648	

Table 5. WKB, SWKB and exact eigenenergies for the potential (13). The first line against each quantum number gives the energies and the second, the corresponding percentage errors, except for $n=0$. The best values are marked by an asterisk.

a	b	n	1WKB	2WKB	1SWKB	2SWKB	Exact
0.60	0.10	0	-0.215 23	-0.282 55	0.00000^{*}		0.00000
		1	2.97533	2.95930	3.12274	3.07444^{*}	3.06619
			-2.963	-3.486	1.844	0.269	
		2	7.12108	7.11282	7.24206	7.19657^{*}	7.19498
			-1.027	-1.142	0.654	0.022	
		3	11.97811	11.97280	12.08354	12.04187^{*}	12.04113
			-0.523	-0.567	0.352	0.006	
		4	17.42806	17.42426	17.52287	17.48443^{*}	17.48396
			-0.320	-0.341	0.223	0.003	
		5	23.3972	23.3943	23.4841	23.4483^{*}	23.4480
			-0.217	-0.229	0.154	0.001	
		6	29.8338	29.8315	29.9146	29.8810^{*}	29.8807
			-0.157	-0.165	0.113	0.001	
		7	36.6992	36.6973	36.7750	36.743 ${ }^{*}$ *	36.7429
			-0.119	-0.124	0.087	0.001	
		8	43.9628	43.9612	44.0344	44.0042^{*}	44.0040
			-0.094	-0.097	0.069	0.000	
		9	51.5998	51.5984	51.6679	51.6391^{*}	51.6388
			-0.076	-0.078	0.056	0.001	
		10	59.5896	59.5884	59.6547	59.6270^{*}	59.6268
			-0.062	-0.064	0.047	0.000	
1.00	0.20	0	-0.269 49	-0.35743	0.00000^{*}		0.00000
		1	4.72985	4.70410	4.92534	4.86856^{*}	4.86110
			-2.700	-3.230	1.322	0.153	
		2	11.02821	11.01423	11.19149	11.13449^{*}	11.13263
			-0.938	-1.064	0.529	0.017	
		3	18.31073	18.30152	18.45436	$18.40058 *$	18.39969
			-0.483	-0.534	0.297	0.005	
		4	26.4190	26.4123	26.5490	26.498 5*	26.4979
			-0.298	-0.323	0.193	0.002	
		5	35.2529	35.2477	35.3725	35.3250^{*}	35.3246
			-0.203	-0.218	0.136	0.001	
		6	44.7416	44.7374	44.8531	44.8081^{*}	44.8078
			-0.148	-0.157	0.101	0.001	
		7	54.8317	54.8283	54.9366	54.8938^{*}	54.8935
			-0.113	-0.119	0.079	0.001	
		8	65.4811	65.4782	65.5805	65.539 5*	65.5392
			-0.089	-0.093	0.063	0.000	
		9	76.6554	76.6528	76.7500	76.710 7*	76.7105
			-0.072	-0.075	0.051	0.000	
		10	88.3257	88.3235	88.4162	88.378 5*	88.3782
			-0.059	-0.062	0.043	0.000	
1.25	0.50	0	-0.504 97	-0.659 27	0.00000^{*}		0.00000
		1	6.34416	6.31053	6.68174	6.56593*	6.54397
			-3.053	-3.567	2.105	0.336	
		2	15.35816	15.34117	15.63331	15.52698^{*}	15.52319
			-1.063	-1.173	0.709	0.024	
		3	25.9745	25.9637	26.2135	26.117 2* *	26.1154
			-0.540	-0.581	0.376	0.007	
		4	37.9237	37.9160	38.1381	38.0498^{*}	38.0487
			-0.329	-0.349	0.235	0.003	
		5	51.0384	51.0326	51.2347	51.152 ${ }^{*}$	51.1520
			-0.222	-0.233	0.162	0.002	

Table 5. (continued)

Table 6. wKB, swKB and exact eigenenergies for the potential (16). The first line against each quantum number gives the energies and the second, the corresponding percentage errors, except for $n=0$. The best values are marked by an asterisk.

a	b	n	1WKB	2WKB	1SWKB	2SWKB	Exact
0.20	1.00	0	0.40284	-0.018 09	0.00000^{*}		0.00000
		1	2.52155	2.57538	2.48325	2.601 23*	2.64185
			-4.554	-2.516	-6.003	-1.538	
		2	3.31131*	2.75696	3.29417	2.95406	3.31881
			-0.226	-16.929	-0.742	-10.990	
		3	4.096 84*	2.94401	4.08506	4.58995	4.11621
			-0.471	-28.478	-0.757	11.509	
		4	$4.886{ }^{\text {23* }}$	3.25189	4.87733	5.52531	4.88924
			-0.062	-33.489	-0.244	13.010	
		5	5.678 26*	4.35424	5.67120	6.33562	5.68493
			-0.117	-23.407	-0.242	11.446	
		6	6.472 06*	5.64212	6.46626	7.11221	6.47378
			-0.027	-12.847	-0.116	9.862	
		7	7.267 08*	6.62184	7.26220	7.87792	7.27017
			-0.043	-8.918	-0.110	8.360	
		8	8.062 97*	7.51657	8.05879	8.64099	8.05408
			-0.014	-6.789	-0.066	7.154	
		9	8.859 52*	8.37576	8.85588	9.40475	8.86121
			-0.019	-5.478	-0.060	6.134	
		10	9.656 56*	9.21693	9.65336	10.17056	9.65732
			-0.008	-4.560	-0.041	5.315	
0.50	1.00	0	0.34027	-0.000 28	$0.0000{ }^{*}$		0.00000
		1	4.42175	4.42294	4.32807	4.448 29*	4.44732
			-0.575	-0.548	-2.681	0.022	
		2	6.95736^{*}	6.71431	6.92655	6.95428	6.99840
			-0.586	-4.059	-1.027	-0.630	
		3	9.16834^{*}	8.65064	9.15243	9.16767	9.17849
			-0.111	-5.751	-0.284	-0.118	
		4	11.28661^{*}	10.66138	11.27644	11.35430	11.29490
			-0.073	-5.609	-0.163	0.526	
		5	13.364 89 *	12.75035	13.35764	13.49805	13.36848
			-0.027	-4.624	-0.081	0.969	
		6	15.42171^{*}	14.86380	15.41618	15.60020	15.42476
			-0.020	-3.637	-0.056	1.137	
		7	$17.46541 *$	16.97225	17.46101	17.67164	17.46716
			-0.010	-2.833	-0.035	1.171	
		8	19.500 41*	19.06655	19.49679	19.72196	19.50190
			-0.008	-2.232	-0.026	1.128	
		9	21.529 3*	21.1460	21.5262	21.7579	21.5303
			-0.005	-1.785	-0.019	1.057	
		10	23.5536^{*}	23.2125	23.5510	23.7840	23.5544
			-0.003	-1.452	-0.014	0.975	
1.00	1.00	0	0.27338	0.01066	0.000 00*		0.00000
		1	6.87633	6.84449	6.76597	6.847 08*	6.85140
			0.364	-0.1001	-1.247	-0.063	
		2	12.07995	12.03463	12.03183	$12.09137 *$	12.10241
			-0.186	-0.560	-0.583	-0.091	
		3	16.72838	16.59083	16.70298	$16.73027{ }^{*}$	16.74299
			-0.087	-0.909	-0.239	-0.076	
		4	21.1367	20.9213	21.1211	21.1375^{*}	21.1464
			-0.046	-1.064	-0.120	-0.042	
		5	25.4220	25.1620	25.4115	25.433 1*	25.4283
			-0.025	-1.047	-0.066	0.019	

Table 6. (continued)

a	b	n	IWKB	2WKB	ISWKB	2SWKB	Exact
2.00	1.00	6	$29.635{ }^{*}$	29.3574	29.6280	29.6619	29.6400
			-0.015	-0.953	-0.040	0.074	
		7	33.803 2*	33.5236	33.7975	33.8452	33.8063
			-0.009	-0.836	-0.026	0.115	
		8	37.939 3*	37.6677	37.9347	37.9955	37.9416
			-0.006	-0.722	-0.018	0.142	
		9	42.052 6*	41.7939	42.0489	42.1207	42.0544
			-0.004	-0.619	-0.013	0.158	
		10	46.1490^{*}	45.9051	46.1459	46.2266	46.1504
			-0.003	-0.532	-0.010	0.165	
		0	0.19845	0.00920	$0.0000{ }^{*}$		0.00000
		1	11.26217	11.2068^{*}	11.15599	11.20468	11.20726
			0.490	-0.003	-0.457	-0.023	
		2	21.1974	21.1805	21.1373	21.187 5*	21.1906
			0.032	-0.048	-0.252	-0.015	
		3	30.5015	30.4804	30.4646	30.502 4*	30.5063
			-0.016	-0.085	-0.137	-0.013	
		4	39.4388	39.3989	39.4144	39.439 8*	39.4454
			-0.017	-0.118	-0.079	-0.014	
		5	48.148 ${ }^{*}$	48.0876	48.1315	48.1481	48.1546
			-0.013	-0.139	-0.048	-0.013	
		6	56.7080^{*}	56.6288	56.6955	56.7073	56.7131
			-0.009	-0.149	-0.031	-0.010	
		7	65.1631^{*}	65.0698	65.1536	65.1636	65.1673
			-0.006	-0.150	-0.021	-0.006	
		8	73.5424	73.4389	73.5349	73.5452^{*}	73.5458
			-0.005	-0.145	-0.015	-0.001	
		9	81.8647^{*}	81.7546	81.8587	81.8706	81.8675
			-0.003	-0.138	-0.011	0.004	
		10	90.142 9* *	90.0290	90.1380	90.1524	90.1452
			-0.003	-0.129	-0.008	0.008	

4.2. Second potential, equation (13)

The results for the second, third and fourth potentials are shown in tables 5, 6, and 7 respectively. The tabular arrangement of the results is similar to that of table 3. For these three potentials, the ground state is zero and iswkb gives the exact result. As the ground-state energy is zero no percentage errors are shown for this level. For $n>0$ the percentage errors are shown immediately below the wKB and swkb results. The best value amongst the four wKB and swKb results is marked by an asterisk.

For the second potential we notice from table 5 that the inclusion of the second term has led to a worsening in the energy value for wкв, but an improvement for the swkb. The iswkb results are better than 1 wкв results, and $2 \mathbf{s w k B}$ results are better than 2 wkb resulis. Here also we find that the convergence of the swke series is betier than that of the wкi series. The 2swkb results are the best in all cases.

4.3. Third potential, equation (16)

It can be shown that the Hamiltonian for this potential has a scaling property. If the eigenvalue is known for a certain value of the ratio b / a, eigenvalues for all other sets

Table 7. WKB, SWKB and exact eigenenergies for the potential (19). The first line against each quantum number gives the energies and the second, the corresponding percentage errors, except for $n=0$. The best values are marked by an asterisk.

a	b	n	1 WKB	2WKB	1SWKB	2SWKB	Exact
0.20	0.25	0	0.00208	-0.000 01	0.00000^{*}		0.00000
		1	0.89365	0.89157	0.89159	0.89159^{*}	0.89159
			0.231	-0.002	0.000	0.000	
		2	1.76819	1.76633^{*}	1.76624	1.76635^{*}	1.76634
			0.105	-0.001	-0.006	0.001	
		3	2.62607	2.624 61*	2.62429	2.624 62*	2.62461
			0.056	0.000	-0.012	0.000	
		4	3.46835	$3.46740{ }^{*}$	3.46680	3.467 40*	3.46739
			0.028	0.000	-0.017	0.000	
		5	4.29675	4.296 33*	4.29547	4.296 33*	4.29632
			0.010	0.000	-0.020	0.000	
		6	5.11345	5.113 49*	5.11244	5.113 49*	5.11350
			-0.001	0.000	-0.021	0.000	
		7	5.92083	5.92118	5.92006	5.92120^{*}	5.92123
			-0.007	-0.001	-0.020	-0.001	
		8	6.72117	6.72171	6.72062	$6.72174 *$	6.72178
			-0.069	-0.0̂0̂i	-0.0.017	-0.000i	
		9	7.51650	7.51713	7.51613	7.51717^{*}	7.51719
			-0.009	-0.001	-0.014	0.000	
		10	8.30848	$8.30914 *$	8.30825	8.309 18*	8.30916
			-0.008	0.000	-0.011	0.000	
0.20	0.30	0	0.00752	-0.000 16	0.00000^{*}		0.00000
		1	0.97623	0.96886	0.96903	0.969 03*	0.96904
			0.742	-0.019	-0.001	-0.001	
		2	1.88071	$1.87650 *$	1.87485	1.87652	1.87638
			0.231	0.006	-0.082	0.007	
		3	2.727 37*	2.72760	2.72349	2.72754	2.72736
			0.000	0.009	-0.142	0.007	
		4	3.53328	3.53577	3.53123	$3.53598 *$	3.53623
			-0.083	-0.013	-0.141	-0.007	
		5	4.31771	4.32051	4.31688	4.32080^{*}	4.32103
			-0.077	-0.012	-0.096	-0.005	
		6	5.09411	5.09734	5.09392	5.097 06*	5.09647
			-0.046	0.017	-0.050	0.012	
		7	5.86939	5.87356	5.869 51*	5.87230	5.87076
			-0.023	0.048	-0.021	0.026	
		8	6.64651	6.65161	6.646 73*	6.64929	6.64719
			-0.010	0.066	-0.007	0.032	
		9	7.42640	7.43201	7.42664^{*}	$7.42 \overline{8} \overline{7} 9$	$7.42 \overline{6} \mathbf{6 7}$
			-0.004	0.072	0.000	0.029	
		10	8.209 14*	8.21472	8.20937	8.21088	8.20919
			-0.001	0.067	0.002	0.021	
0.20	0.40	0	0.02518	-0.001 25	0.00000^{*}		0.00000
		1	1.11102	1.08898	1.08973	1.090 68*	1.09059
			1.873	-0.148	-0.079	0.008	
		2	1.95991	1.972 42* *	1.95294	1.97410	1.97194
			-0.610	0.024	-0.964	0.110	
		3	2.70732	2.72374	2.70702	2.72164^{*}	2.72231
			-0.551	0.053	-0.562	-0.025	
		4	3.45531	3.49070	$3.4560^{* *}$	3.47018	3.45680
			-0.043	0.981	-0.022	0.387	
		5	4.21691*	4.25163	4.21755	4.22513	4.21616
			0.018	0.841	0.033	0.213	

Table 7. (continued)

of the parameters a and b which have the same value for the ratio b / a can be obtained by multiplying the known eigenvalue by a function of a and b. Because of the scaling property, the parameter b was kept fixed at 1 and a was given values from 0.2 to 1.0 . For this potential we find a complicated pattern in the results. For the first two sets we notice from table 6 that 2 WKB results become worse than the 1 wKB ones after $n=1$, and a similar statement holds for the swki results. For $n<2$, the 2 swkb results are the best, but above this the 1 WKB results are the best. But at $a=1.0, b=1.0$, the pattern changes. 2WKR is worse than 1 wKB for $n>1$, but the dividing line for the swkb case is now at $n=5$. Also the pattern of 'best results' is different from the previous two cases. For $n<6,2$ 2wкb results are the best, but above it, 1 wкв ones are the best. The pattern of results for $a=2, b=1$ is similar to that of the previous set, except for two minor differences.

4.4. Fourth potential, equation (19)

The Hamiltonian for this potential also has a scaling property similar to that of the potential (16). Hence the parameter a was kept fixed at 0.2 and b was given values between 0.25 and 0.6 . We notice from table 7 that in the first set ($b=0.25$), the 2 wKB results are better than the 1 wKB ones, and a similar situation holds for the swKB results.
 better than 1 SWKB, but from $n=7$ onward the reverse pattern is observed. This dividing line shifts to smaller n values as b is further increased. At $b=0.6$ it has reached $n=1$. The pattern of 'best results' is quite complicated and is best seen by referring to the asterisks in table 7.

5. Conclusion

The results presented in this paper show that while in certain situations the effect of the second term in the wкb and swkb approximations may be uniform and the convergence of the swkb series may be better than the wкb series, these are by no means universal results. In general, the effect of the second term in the wKB and swKB approximations depends on all the factors involved, namely the potential, the parameters involved and the quantum number. No simple generalizations are possible. In some cases 1 swkr can be better than $1 \mathbf{w K b}$, and 2 SWKB can be better than 2 WKB but the reverse can be true in some other cases.

Acknowledgment

This work was supported in part by a research grant from the Natural Sciences and Engineering Research Council of Canada to the author.

References

Barwell M G, LeRoy R J, Pajunen P and Child M S 1979 J. Chem. Phys. 712618
Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)
Birkoff G D 1933 Bull. Am. Math. Soc. 39696
Bohm D 1951 Quantum Theory (Englewood Cliffs, NJ: Prentice-Hall) p 268
Bose S K and Varma N 1989 Phys. Lett. 141A 141
Boya L J, Kmiecik M and Bohm A 1987 Phys. Rev. D 351255
Burrows B L, Cohen M and Feldmann T 1989 J. Phys. A: Math. Gen. 221303
Chaudhuri R N and Mondal M 1989 Phys. Rev. A 406080

- 1991 Phys. Rev. A 433241

Comtet A, Bandrauk A and Campbell D 1985 Phys. Lett. 150B 159
Cooper F and Freedman B 1983 Ann. Phys., NY 15199
DeLaney D and Nieto M M 1990 Phys. Lett. 247B 301
Dutt R, Khare A and Sukhatme U P 1986 Phys. Lett. 181B 295

- 1988 Am. J. Phys. 56163
- 1991 Am. J. Phys. 59723

Dutt R, Khare A and Varshni Y P 1987 Phys. Lett. 123A 375
Dutta A K and Willey R S 1988 J. Math. Phys. 29892
Estrin D A, Fernandez F M and Castro E A 1990 J. Phys. A: Math. Gen. 232395
Filho E D and Ricotta R M 1989 Mod. Phys. Lett. A 42283
Fricke S H, Balantekin A B, Hatchell P J and Uzer T 1988 Phys. Rev. A 372797
Fu-Bin L 1989 Acta Phys. Sinica 38879
Gedenshtein L 1983 JETP Lett. 38356
Ifantis E K and Panagopoulos P N 1990 J. Math. Phys. 312410
Kemble E C 1958 The Fundamental Principles of Quantum Mechanics (New York: Dover) (this is a reprint of the 1937 edition published by McGraw-Hill)
Kesarwani R N and Varshni Y P 1978 Can. J. Phys. 561488

- 1980 Can. J. Phys. 58363
-_ 1981 J. Math. Phys. 221983
—— í988
——1982b J. Math. Phys. 2392
-_ 1982c Z. Naturforsch. 37a 1301
Khare A 1985 Phys. Lett. 161B 131
Khare A and Varshni Y P 1989 Phys. Lett. 142A 1
Krieger J B, Lewis M L and Rosenzweig C 1967 J. Chem. Phys. 472942
Murrell J N 1969 Mol. Phys. 16601
Pons R and Marcilhacy G 1991 Phys. Lett. 152A 235
Raghunathan K, Seetharaman M and Vasan S S 1987 Phys. Lett. 188A 351
Roy B, Roy P and Roychoudhury R 1991 Fortschr. Phys. 39211
Roy P, Roychoudhury R and Varshni Y P 1988 J. Phys. A: Math. Gen. 211589
Singh C A, Singh S B and Singh K D 1990 Phys. Lett. 148A 389
Varshni Y P 1987 Phys. Rev. A 363009
Vasan S S, Seetharaman M and Raghunathan K 1988 J. Phys. A: Math. Gen. 211897
Witten E 1981 Nucl. Phys. B 188513
Znojil M 1986 Phys. Lett. 116A 207

